Math - 样本方差(sample variance)的分母为什么是 n - 1

按照定义,方差的 estimator 应该是: $$ \begin{equation} S^2 = \frac{1}{n}\sum_{i = 1}^n\left(X_i - \overline{X}\right)^2 \label{eq:sample-variance} \end{equation} $$ 但是这个 estimator 有 bias,因为: $$ \begin{align*} E(S^2) &= \frac{1}{n}\sum_{i = 1}^nE\left[\left(X_i - \overline{X}\right)^2\right] \\ &= \frac{1}{n}E\left[\sum_{i = 1}^n\left(X_i - \mu + \mu - \overline{X}\right)^2\right]\\ &= \frac{1}{n}E\left[\sum_{i = 1}^n\left(X_i - \mu\right)^2 - n \left(\overline{X} - \mu \right)^2\right] \\ &= \frac{1}{n} \left[\sum_{i = 1}^nE\left(\left(X_i - \mu\right)^2\right) - nE\left(\left(\overline{X} - \mu\right)^2\right)\right] \\ &= \frac{1}{n}\left[n\operatorname{Var}(X) - n\operatorname{Var}(\overline{X})\right] \\ &= \operatorname{Var}(X) - \operatorname{Var}(\overline{X}) \\ &= \sigma^2 - \frac{\sigma^2}{n} = \frac{n - 1}{n}\sigma^2 \end{align*} $$ 关于 $\operatorname{Var}(\overline{X}) = \frac{\sigma^2}{n}$ 的证明参考: Prove that $E (\overline{X} - \mu)^2 = \frac{1}{n}\sigma^2$ ...

 发布时间: 2025-08-16

Math - Cauchy-Schwarz不等式的几种证明方法

接触的契机 Cauchy-Schwarz不等式是一个很有名的不等式,多次在不同的地方遇见。当我读 Introduction to Linear Optimization 时再次遇见它却不知道如何证明,于是写下此文用于记录各种证明方法以供查阅,本文参考了台湾阳明交通大学应用数学系教授 林琦焜的《Cauchy-Schwarz不等式之本質與意義》论文。 ...

 发布时间: 2025-08-03

Math - 二维图形相交问题

在我读一篇关于 基于机器学习的无人机路线规划问题的论文时,文章中提出了一个检测无人机行驶的路线中如果遇到受限制的区域(比如禁飞区、军事基地等)应该如何绕行的问题,其中就需要先检测飞行的路线是否经过受限制的区域的问题,在这里我们可以将这个问题简化成: ...

 发布时间: 2024-11-19